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We extend a result of Dubins (1975) from bounded to unbounded random

variables. Dubins (1975) showed that a finitely additive expectation over

the collection of bounded random variables can be written as an integral

of conditional expectations (disintegrability) if and only if the marginal ex-

pectation is always within the smallest closed interval containing the con-

ditional expectations (conglomerability). We give a sufficient condition to

extend this result to the collection Z of all random variables that have fi-

nite expected value and whose conditional expectations are finite and have
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finite expected value. The sufficient condition also allows the result to ex-

tend some, but not all, subcollections of Z . We give an example where the

equivalence of disintegrability and conglomerability fails for a subcollection

of Z that still contains all bounded random variables.

1. Introduction. In discussions of the foundations of probability, a long-

standing topic of debate is whether to require, beyond being finitely additive, that

probabilities are countably additive. Specifically, we take the following three ax-

ioms to constitute the theory of finitely additive probability. Let {Ω,B} be a

measurable space. For all A,B ∈ B,

Axiom 1: 0 ≤ P (A) ≤ 1.

Axiom 2: P (Ω) = 1.

Axiom 3: If A ∩B = ∅, then P (A) + P (B) = P (A ∪B).

Countable additivity, which is taken by Kolmogorov (1956, p. 15) as an “expedi-

ent”, requires the following. Let {Ai}∞i=1 be elements of B.

Axiom 4: If Ai ∩ Aj = ∅ for all i 6= j, then P (∪∞i=1Ai) =
∑∞

i=1 P (Ai).

Call a probability merely finitely additive if it satisfies the first three axioms but

fails the fourth one.
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We recognize that the received view among probabilists, following Kolmogorov’s

seminal presentation, assumes countable additivity. de Finetti (1930, 1974), and

intervening works, advocated a theory that permitted merely finitely additive prob-

abilities. One of de Finetti’s reasons for the added liberality, not to require count-

able additivity, is to make room for non-trivial probabilities that are defined for all

elements of the power set of an uncountable Ω. Such probabilities are precluded

under countable additivity by a theorem of Ulam (1930). On the other hand, there

is no threat of non-measurability when probability is allowed to be merely finitely

additive. However, the existence of such fully defined probabilities depend upon

non-constructive methods, e.g., the Axiom of Choice. We understand, for exam-

ple, the need to sidestep problems of measurability to be a central motive in for

the use of finite additivity by Dubins and Savage (1965).

A second reason de Finetti gave for merely finitely additive probabilities is

to allow uniform distributions on countably infinite sets. With countable additiv-

ity, for each finite set Ω there is a uniform distribution, and Lebesgue measure

provides a uniform distribution on (Lebesgue measurable subsets of) the unit in-

terval, [0, 1]. But there can be no uniform countably additive probability on, e.g.,

the rational numbers in [0, 1] or the integers. This issue is relevant to understand-

ing some otherwise anomalous features of Bayesian statistical inference that arise
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when using so-called “improper” priors, as in the theory of Jeffreys (1939), as

we explain below. Also, see Schirokauer and Kadane (2007) for a discussion of

uniform distributions on the integers.

The two issues, above, i.e., regarding the domain of a probability function, and

regarding when a uniform probability distribution exists, are about unconditional

probability. The debate over countable additivity also involves matters dealing

with the theory of conditional probability. We take it as non-controversial that

conditional probability satisfies this product rule:

P (A ∩B) = P (A|B)P (B) = P (B|A)P (A).

And when the conditioning event has positive probability, i.e. P (A) > 0, we can

use this rule to fix conditional probability by unconditional probability: P (B|A) =

P (A ∩B)/P (A).

However, when the conditioning event is null, i.e. P (A) = 0, the countably

additive theory of unconditional countably additive probability denies that condi-

tional probability is defined given such an eventA . Rather, P (B|A) is understood

through the Radon-Nikodym theorem as a solution to an integral equation with re-

spect to a sub-σ-field that contains the event A.
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DEFINITION 1. Let A be a sub-σ-field of B. Then P (·|A)(·) is a regular

conditional distribution (rcd) on B, given A if

1. For each ω ∈ Ω, P (·|A)(ω) is a probability on B,

2. for each B ∈ B, P (B|A)(·) is an A-measurable function, and

3. for each A ∈ A, P (A ∩B) =
∫
A
P (B|A)(ω)dP (ω).

That is, P (B|A)(·) is a version of the Radon-Nikodym derivative of P (·∩B) with

respect to P defined on the sub-σ-field A.

However, as Kolmogorov (1956, Section 5.2) points out this leads to the so-

called “Borel Paradox”. To summarize the paradox, let A and A′ be the σ-fields

generated by two different random variables X and X ′ respectively. The paradox

finds an event A, a value x of X , and a value x′ of X ′ such that the two events

{X = x} and {X ′ = x′} are identical, but P (A|X = x) 6= P (A|X ′ = x′).

That is, with B = {X = x} = {X ′ = x′}, we find that P (A|B) depends on

which σ-field we choose for conditioning. It is well-known that, for a specific

pair X and X ′, the sets of all x and x′ values that lead to this paradox form sets of

probability 0. However, Kadane, Schervish and Seidenfeld (1986) illustrate how

one can make the paradox occur with positive probability by considering more

than countably many random variables at a time.
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In contrast to the countably additive theory, (see Krauss, 1968 and Dubins,

1975) finitely additive conditional probability distributions can be fully defined

given each non-empty event in B, while satisfying the following generalization of

the product rule:

For all A, B, and C such that B ∩ C 6= ∅, P (A ∩ C|B) = P (C|B)P (A|B ∩ C).

However, the cost for these finitely additive conditional probabilities includes the

penalty that they may fail to satisfy the integral property (clause 3 in Definition 1).

In particular, there can exist a denumerable partition π = {Ai}∞i=1 and an event B

such that

P (B) 6=
∞∑
i=1

P (B|Ai)P (Ai). (1)

If (1) holds, we say that P fails to be disintegrable in the partition π. (See Defi-

nition 4 below for a precise definition.) Here is an elementary illustration, due to

Dubins (1975) and discussed further in Kadane, Schervish and Seidenfeld (1996).

EXAMPLE 1. Let Ω = {0, 1} × {1, 2, . . .}. Let P be a finitely additive prob-

ability such that satisfies the following:

• P ((1, i)) = 2−i−1 for i = 1, 2, . . .,
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• P (B) = 1/2, where B = {(0, 1), (0, 2), . . .}) = 1/2, and

• P ((0, i)) = 0 for i = 1, 2, . . ..

Let π = {Ai}∞i=1 where Ai = {(0, i), (1, i)}. Since P (Ai) = 2−i−1 > 0 for all i,

we have

P (B|Ai) =
P (B ∩ Ai)
P (Ai)

= 0,

for all i. Hence
∑∞

i=1 P (B|Ai)P (Ai) = 0 6= P (B).

The concept of disintegrability is relevant to understanding some otherwise

anomalous features of Bayesian statistical inference that arise when using so-

called improper priors. These are instances of the so-called marginalization para-

doxes of Dawid, Stone and Zidek (1973). As Kadane, Schervish and Seidenfeld

(1996, Section 5) explains, an improper prior, e.g. Lebesgue measure over the

whole real line, corresponds to a merely finitely additive prior probability on the

real line. Each unit interval has equal probability, i.e. probability 0. Even when

the formal posterior computed from the improper prior turns out to be countably

additive, the joint (finitely additive) probability may fail to be disintegrable in the

partition determined by the data.

In Example 1, we also see that the conditional probabilities P (B|Ai) have

the property that there exists ε > 0 such that P (B) > P (B|Ai) + ε for every i.
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de Finetti (1930) says that such a probability fails conglomerability in the parti-

tion. (See Definition 4 for a more precise definition.) Schervish, Seidenfeld and

Kadane (1984) show that each merely finitely additive probability fails conglom-

erability in some denumerable partition, which is not possible for countably addi-

tive probabilities. As we saw above, for nondenumerable partitions, the countably

additive theory imposes disintegrability on the definition of conditional probabil-

ity. Consequently the theory is not able to define P (A|B), as we saw in the Borel

Paradox.

Dubins (1975) established an important equivalence between conglomerabil-

ity and disintegrability of finitely additive expectations, what de Finetti (1974)

calls (coherent) previsions (see Definition 2 below), with respect to the class

of bounded random variables. Dubins showed that, with respect to the class of

bounded random variables, by replacing countably additive probability and con-

ditional probability with the more general concepts of (finitely additive) expecta-

tions and conditional expectations, then a finitely additive expectation function is

disintegrable in a partition if and only its conditional expectations are conglomer-

able in that partition.

In this paper we extend Dubins’ result to particular classes of unbounded ran-

dom variables. We extend the theory of finitely additive integrals to unbounded
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variables using ideas from the theory of the Daniell integral. In Section 2 we re-

view de Finetti’s concept of finitely additive expectations, what he calls (coherent)

previsions, and show how to extend these to unbounded variables. In Section 3 we

review Dubins’ result and discuss how to extend conglomerability to unbounded

random variables. In Section 4 we establish an equivalence between disintegra-

bility and conglomerability for previsions of unbounded random variables, on the

condition that the domain of the prevision function includes the linear span of the

random variables for which previsions are given. In Section 5 we show that the

equivalence is not valid if the domain of the prevision function includes merely the

linear span of the bounded random variables. We offer a concluding discussion in

Section 6.

2. Background. Let Ω be a fixed non-empty set, π a partition of Ω, and

X the collection of bounded, real-valued random variables defined on Ω. The

concept of coherent prevision on a collection of random variables was introduced

by de Finetti (1974).

DEFINITION 2. Let P be a collection of random variables defined on Ω. A

function P : P → IR is called a prevision. We say that P is incoherent if there

exists a finite subset {X1, . . . , Xn} of P and scalars α1, . . . , αn and ε > 0 such
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that, for all ω ∈ Ω,
n∑
i=1

αi[Xi(ω)− P (Xi)] < −ε. (2)

If P is not incoherent, we say that P is coherent.

An equivalent, and sometimes more convenient, way to define coherent prevision

is to say that P is coherent if, for every finite subset {X1, . . . , Xn} of P and all

scalars α1, . . . , αn,

sup
ω∈Ω

n∑
i=1

αi[Xi(ω)− P (Xi)] ≥ 0. (3)

It is not difficult to see that this is equivalent to Definition 2.

Given an arbitrary set Ω and the collection X of all bounded random vari-

ables defined on Ω, it is always possible to find a coherent prevision P defined

on X . However, this existence result, like many others in this domain, relies on

the Axiom of Choice. We avail ourselves of the Axiom of Choice whenever it

is needed in this paper. Of course, there are many coherent previsions on X ,

but each of them will be a finitely additive probability when restricted to the col-

lection of indicator functions of subsets of Ω. That is, using the standard nota-

tion of letting the name of an event stand for its indicator function, P (Ω) = 1,

P (A ∪ B) = P (A) + P (B) when A ∩ B = ∅, and P (A) ≥ 0 for all A ⊆ Ω.

By finite additivity and linearity of prevision, the prevision of a simple function
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(one that assumes only finitely many distinct values) X =
∑n

i=1 αiAi equals∑n
i=1 αiP (Ai). This resembles the formula for the integral of a simple function

in the usual measure theoretic derivation. To carry the resemblance further, the

values of P on X are uniquely determined from the finitely additive probability

by means of the fact that

P (X) = sup
simple Y ≤ X

P (Y ) = inf
simple Y ≥ X

P (Y ). (4)

The first equation in (4) is the same way that the Lebesgue integral of a non-

negative functionX is defined in terms of the integrals of simple functions. Indeed

P can be expressed as a finitely additive integral. For each X ∈ X , we denote

P (X) =
∫

Ω
X(ω)P (dω). Generalizing from the definition of Daniell integral

in Royden (1968, Chapter 13), we can call a prevision a finitely additive Daniel

integral.

DEFINITION 3. Let L be a linear space of functions that contains all con-

stants, and let L be a linear functional defined on L that satisfies L(X) ≥ 0

whenever X(ω) ≥ 0 for all ω. Then L is called a nonnegative linear functional or

a finitely additive Daniell integral over L. We can write L(X) =
∫

Ω
X(ω)L(dω).
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Finitely additive Daniell integrals behave in many ways like the countably addi-

tive Lebesgue integral. One property that the two integrals share is the following

transformation property that we use.

LEMMA 1. Let L be a linear space of functions on Ω, and let H : Ω→ Θ be

a function. Let L be a finitely additive Daniell integral over L. LetW be a linear

space of functions on Θ that includes all constants and such that, Z(H) ∈ L for

every Z ∈ W . Define LH(Z) = L(X), where X = Z(H). Then LH is a finitely

additive Daniell integral onW that we call the integral induced from L by H .

PROOF. If Z1, Z2 ∈ W and α, β ∈ IR, then

LH(αZ1 + βZ2) = L[αZ1(H) + βZ2(H)] = αL[Z1(H)] + βL[Z2(H)]

= αLH(Z1) + βLH(Z2).

If Z(θ) ≥ 0 for all θ ∈ Θ, then X(ω) = Z(H(ω)) ≥ 0 for all ω ∈ Ω. Hence

LH(Z) = L(X) ≥ 0. �

In terms of integrals, Lemma 1 says that

∫
Θ

Z(θ)LH(dθ) =

∫
Ω

Z(H(ω))L(dω). (5)
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Extending a finite coherent prevision P on a set of random variables P to a

finitely additive Daniell integral is straightforward.

LEMMA 2. Let P be a coherent prevision on a setP of random variables such

that P (X) is finite for all X ∈ P . Then there exists a finitely additive Daniell

integral L on a linear space L that contains P such that L(X) = P (X) for every

X ∈ P .

PROOF. Let L be the linear span of P . For each Y ∈ L, express Y as∑n
i=1 αiXi with X1, . . . , Xn ∈ P . Define L(Y ) =

∑n
i=1 αiP (Xi). To see that L

is well-defined, assume that Y can be expressed two different ways as

Y =
n∑
i=1

αiXi =
m∑
j=1

βjYj.

Let `1 =
∑n

i=1 αiP (Xi) and `2 =
∑m

j=1 βjP (Yj). If `1 > `2, then for all ω

n∑
i=1

αi[Xi(ω)− P (Xi)]−
m∑
j=1

βj[Yj(ω)− P (Yj)] = `2 − `1 < 0.

This would make P incoherent, a contradiction. A similar contradiction arises if

`1 < `2. So L is well-defined. It is straightforward to see that L is linear. To see

that X ≥ 0 implies L(X) ≥ 0, suppose to the contrary that L(X) = −ε < 0.
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Write X =
∑n

i=1 αiXi. Then, for all ω,

n∑
i=1

(−αi)[Xi − P (Xi)] = −X + L(X) ≤ −ε,

which is a contradiction to P being coherent. �

In view of Lemma 2, there is no loss of generality in assuming that every finite

coherent prevision is defined on a linear space. For the remainder of this paper,

we make that assumption.

As Krauss (1968) and Dubins (1975) prove, for each coherent prevision P

one can construct a family of coherent conditional previsions P (X|h), defined for

each pair, (X, h) with X ∈ X and h a nonempty subset of Ω. Coherence places

only one restriction on P (X|h), namely that

P (h)P (X|h) = P (hX), (6)

when the previsions are finite. If P (h) = 0 and all previsions are finite, this

restriction is vacuous, and P (X|h) is completely arbitrary. de Finetti (1974, Sec-

tion 4.2) says that it is also necessary for

inf
ω∈h

X(ω) ≤ P (X|h) ≤ sup
ω∈h

X(ω). (7)
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If P (h) > 0 and the previsions are coherent, then (7) will hold. Although (7) is

a useful property for conditional previsions to have in general, it is not required

in order to avoid sure loss in de Finetti’s sense when P (h) = 0. If one is going

to impose additional constraints on conditional previsions when P (h) = 0 so that

they behave more like the cases in which P (h) > 0, it might make more sense to

assume something along the following lines.

ASSUMPTION 1. Let h be a nonempty subset of Ω and let L be a linear space

of random variables that includes h. Then

• P (·|h) is a linear functional on L,

• P (h|h) = 1, and

• If X ∈ L and X(ω) ≥ 0 for all ω ∈ h, then P (X|h) ≥ 0.

We next prove some useful implications of Assumption 1 including that Assump-

tion 1 implies (7).

LEMMA 3. Let L be a linear space of random variables. Let h be a nonempty

set such that h ∈ L. Let P (·|h) be a conditional prevision on L that satisfies

Assumption 1. Let X ∈ L.

• If Xh ∈ L, then P (Xh|h) = P (X|h).
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• (7) holds.

• Let z be a real constant. If X(ω) = z for all ω ∈ h, then P (X|h) = z.

PROOF. For the first claim, let Y = X −Xh. Then Y (ω) = 0 for all ω ∈ h.

It follows from the last bullet in Assumption 1 that P (Y |h) ≥ 0 and P (Y |h) ≤ 0,

hence P (Y |h) = 0. By the first bullet in Assumption 1, P (Xh|h) = P (X|h). For

the second claim, we prove only the first inequality in (7) as the second follows

from applying the first inequality with −X instead of X . If infω∈hX(ω) = −∞,

the first inequality in (7) is immediate. Because X is real valued, infω∈hX(ω) <

∞. So, assume that infω∈hX(ω) is finite, and call the value z. Then X(ω) −

zh(ω) ≥ 0 for all ω ∈ h. The last bullet in Assumption 1 implies that P (X −

zh|h) ≥ 0. The first and second bullets imply that

P (X|h) ≥ P (zh|h) = zP (h|h) = z. (8)

For the third claim, notice that Xh = zh ∈ L. Then apply the first claim together

with the last two equalities in (8). �

Dubins (1975) relies on Assumption 1 in proving his equivalence between

conglomerability and disintegrability. The following result shows that, if one

starts with coherent previsions, then coherent conditional previsions that satisfy
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Assumption 1 can be constructed simultaneously for each set h in a partition π.

LEMMA 4. Assume that P is a finite coherent prevision on a linear space L

of random variables defined on Ω. Let π be a partition of Ω into nonempty sets.

For every h ∈ π, there exists P (·|h) that satisfies Assumption 1.

PROOF. Let π be a partition of Ω into nonempty events. For all h ∈ π such

that P (h) = 0, let ωh ∈ h, and define P (X|h) = X(ωh) for all X ∈ L. This

clearly satisfies Assumption 1. For those h with P (h) > 0, we need to ensure

both (6) and Assumption 1. Construct the collection D of all random variables

of the form Xh where X ∈ L, h ∈ π has P (h) > 0, and such that Xh 6∈ L.

If D is nonempty, well order D. The fundamental theorem of prevision (e.g.,

Schervish, Kadane and Seidenfeld (2008, Proposition 6)) allows one to extend a

coherent prevision defined on an arbitrary collection, one random variable at a

time, to a coherent prevision on a larger collection. Using transfinite induction,

we can extend P to L∪D as follows. At each successor ordinal, the fundamental

theorem applies directly. At each limit ordinal, coherence places requirements

on finitely many previsions at a time. Since all finite collections of previsions

were verified as coherent at earlier stages of the induction, the entire collection is

coherent at each limit ordinal. Next, use Lemma 2 to extend P to the linear span

of L ∪ D. Finally, regardless of whether or not D was empty, for each X ∈ L,
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define P (X|h) = P (Xh)/P (h), which satisfies Assumption 1. �

Although the conditional previsions constructed in Lemma 4 satisfy Assump-

tion 1, they are not necessarily the only ones that do so. For the remainder of the

paper we assume that, for the partition π under consideration and for each h ∈ π,

P (·|h) satisfies Assumption 1.

3. Conglomerability and disintegrability. We turn now to precise defini-

tions of conglomerability and disintegrability. Let π be a partition of Ω. That is, π

is a collection {h : h ∈ π} of mutually disjoint subsets of Ω such that their union

is Ω. The conditional prevision of each random variable X given each element

h of π is P (X|h). In order to make sense out of the loose phrase “the integral

of the conditional prevision equals the marginal prevision,” we need to be precise

about what it means to integrate the conditional prevision. We take the approach

of Lemma 1. Let H : Ω → π be the function defined by H(ω) equal to that

unique h ∈ π such that ω ∈ h. Let PH denote the finitely additive Daniell integral

induced from P by H . For each function Z : π → IR defined on π, we use (5) to

write ∫
π

Z(h)PH(dh) =

∫
Ω

Z(H(ω))P (dω) = P [Z(H)]. (9)
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For a random variable X such that P (X|h) is finite for all h ∈ π, let P (X|h) be

Z(h) in (9). Then (9) becomes

∫
π

P (X|h)PH(dh) =

∫
Ω

P (X|H(ω))P (dω) = P [P (X|H)]. (10)

Then (10) is what we mean by the integral of the conditional prevision.

In order to avoid cases in which previsions or conditional previsions are infi-

nite, we deal only with random variables that satisfy the following assumption.

ASSUMPTION 2. Let X : Ω→ IR and let π be a partition of Ω.

1. P (|X|) <∞,

2. for each h ∈ π, P (X|h) is finite, and

3. P [P (X|H)] is finite.

The set Z of all X that satisfy Assumption 2 is a linear space. Also, if X ∈ Z

then P (X|H) ∈ Z .

DEFINITION 4. Let π be a partition of Ω. Let W be a collection of random

variables defined on Ω and that satisfy Assumption 2. P is conglomerable in π
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with respect toW if, for each X ∈ W

inf
h∈π

P (X|h) ≤ P (X) ≤ sup
h∈π

P (X|h). (11)

P is disintegrable in π with respect toW if, for each X ∈ W ,

∫
π

P (X|h)PH(dh) =

∫
Ω

X(ω)P (dω). (12)

In view of (10), there is an alternative way to express that P is disintegrable in a

partition.

PROPOSITION 1. P is disintegrable in π with respect toW if and only if, for

each X ∈ W , P (X) = P [P (X|H)].

Dubins (1975, Theorem 1) shows that, with respect to the collection X of

bounded random variables, P is conglomerable in π if and only if P is disinte-

grable in π. The purpose of this note is to extend the equivalence of conglomer-

ability and disintegrability to larger collections of random variables (such as Z)

that satisfy Assumption 2.

Finally, we demonstrate that the equivalence of conglomerability and disinte-

grability may fail for a collection Y of random variables that are bounded below,
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where X ⊂ Y ⊂ Z . In Section 5, we produce a coherent prevision P and parti-

tion π where P is conglomerable in π with respect to Y , yet where P fails to be

disintegrable in π with respect to Y . In this case, the collection Y is not a linear

space, e.g., when Y ∈ Y is an unbounded random variable, then −Y 6∈ Y .

Readers of Dubins (1975) will note that the definition of conglomerable in

Definition 4 looks different from the corresponding definition of Dubins. Specif-

ically, Dubins’ definition is that P is conglomerable in π with respect to the col-

lectionW if

for all X ∈ W , P (X|h) ≥ 0 for all h ∈ π implies P (X) ≥ 0. (13)

Definition 4 is a straightforward generalization of the definition that de Finetti

(1974, p. 143) gives for indicators of events. Definition 4 and (13) are equivalent

when W = X , the collection of all bounded random variables. The proof relies

on the fact that X is a linear space and contains all constants. The two definitions

are not necessarily equivalent for every collection that is not a linear space and/or

does not contain all constants.

EXAMPLE 2. Consider the same situation as Example 1. LetW be the collec-

tion of all nonnegative random variables. Because each X ∈ W is nonnegative,
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it follows that P (X|Ai) ≥ 0 for all i and P (X) ≥ 0. Hence, (13) holds. On the

other hand, let X((j, i)) = j for all j = 0, 1 and i = 1, 2, . . .. Then P (X|Ai) = 1

for all i while P (X) = 1/2 and P is not conglomerable by Definition 4.

In order to maintain the spirit of Dubins’ definition when W is not a linear

space or does not contain all constants, we need to strengthen (13).

DEFINITION 5. LetW be a collection of random variables. Let π be a parti-

tion, and let P be a coherent prevision onW . We say that P is D-conglomerable

in π with respect toW if the following is true. For all X ∈ W and all real c,

• P (X|h) ≤ c for all h ∈ π implies P (X) ≤ c, and

• P (X|h) ≥ c for all h ∈ π implies P (X) ≥ c.

We now show that Definition 5 is equivalent to conglomerability from Defini-

tion 4.

LEMMA 5. LetW be a collection of random variables. Let π be a partition,

and let P be a coherent prevision on W . Then P is conglomerable in π with

respect toW if and only if P is D-conglomerable in π with respect toW .

PROOF. For the “if” direction, suppose that P is D-conglomerable in π with

respect toW . Let X ∈ W , and let c1 = infh∈π P (X|h) and c2 = suph∈π P (X|h).
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If c1 is finite, then P (X|h) ≥ c1 for all h ∈ π and Definition 5 says that P (X) ≥

c1. If c2 is finite, then P (X|h) ≤ c2 for all h ∈ π so that P (X) ≤ c2. If

c1 = −∞, then c1 ≤ P (X) is obvious. Similarly, if c2 = ∞, then P (X) ≤ c2 is

obvious. The only remaining cases are when c1 = ∞ or = c2 = −∞. Suppose

that c1 = ∞. Then c2 = ∞ also. We need to show that P (X) = ∞. Because

P (X|h) ≥ c for all real c and all h ∈ π, Definition 5 implies that P (X) ≥ c for

all c > 0. Hence P (X) = ∞. Similarly, if c2 = −∞ then c1 = −∞ also and

P (X|h) ≤ c for all real c and h ∈ π, Definition 5 implies that P (X) ≤ c for all

real c. Hence P (X) = −∞.

For the “only if” direction, suppose that P is conglomerable in π with respect

toW . Let X ∈ W . Then Definition 4 implies that

inf
h∈π

P (X|h) ≤ P (X) ≤ sup
h∈π

P (X|h).

Let c ∈ IR. If P (X|h) ≥ c for all h ∈ π, then c ≤ infh∈π P (X|h) ≤ P (X).

Similarly, if P (X|h) ≤ c for all h ∈ π, then c ≥ suph∈π P (X|h) ≥ P (X). �

4. Extending the equivalence of conglomerability and disintegrability to

unbounded variables. Lemma 6 shows that, under Assumption 2, disintegra-

bility implies conglomerability for arbitrary collections.
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LEMMA 6. LetW be a collection of random variables each of which satisfies

Assumption 2. Let π be a partition, and let P be a coherent prevision onW such

that P is disintegrable in π with respect toW . Then P is conglomerable in π with

respect toW .

PROOF. Let H : Ω → π be defined by H(ω) equal to the unique h ∈ π such

that ω ∈ h. Let X ∈ W , and define X ′ by X ′(ω) = P (X|H(ω)). Then we have

defined P [P (X|H)] to be P (X ′). Because P is coherent,

inf
ω∈Ω

X ′(ω) ≤ P (X ′) ≤ sup
ω∈Ω

X ′(ω). (14)

¿From the definition of X ′, we see that

inf
ω∈Ω

X ′(ω) = inf
h∈π

P (X|h), and sup
ω∈Ω

X ′(ω) = sup
h∈π

P (X|h). (15)

Combining (14) and (15) we get that (11) holds. Since the above argument applies

to all X ∈ W , P is conglomerable in π with respect toW . �

In light of Lemma 6, for each partition π and each coherent prevision P , every

setW of random variables satisfying Assumption 2 falls into one of three classes.

DEFINITION 6. Let P be a coherent prevision, and let π be a partition. LetW
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be a collection of random variables that have previsions under P . We say that

• W is of Class 0 relative to P and π if P is neither conglomerable nor disin-

tegrable in π with respect toW .

• W is of Class 1 relative to P and π if P is conglomerable in π with respect

toW but P is not disintegrable in π with respect toW .

• W is of Class 2 relative to P and π if P is both conglomerable and disinte-

grable in π with respect toW .

Dubins (1975, Theorem 1) can be reexpressed as saying that for each partition

π and each coherent prevision P the classX of bounded random variables is either

of Class 0 or of Class 2 but never of Class 1 relative to P and π. In Section 5,

we give an example of a coherent prevision P , a partition π, and a collection Y of

random variables such that X ⊂ Y and Y is of Class 1 relative to P and π. The

following result is a straightforward consequence of the class definitions.

PROPOSITION 2. Let P be a coherent prevision that satisfies Assumption 1,

and let π be a partition. Let W be a collection of random variables that satisfy

Assumption 2. IfW is of Class 0 relative to P and π, then every superset ofW is

also of Class 0. IfW is of Class 2 relative to P and π, then every subset ofW is

also of Class 2.
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Our extension of Dubins’ theorem gives a sufficient condition for a collection

W of random variables to not be of Class 1.

THEOREM 1. Let P be a coherent prevision that satisfies Assumption 1. Let

π be a partition of Ω, and let H : Ω→ π be defined by H(ω) equal to that unique

h ∈ π such that ω ∈ h. LetW be a set of real-valued random variables defined

on Ω that satisfy Assumption 2. Finally, assume that W satisfies the following

condition:

for every X ∈ W , X − P (X|H) ∈ W . (16)

Then, with respect to the collectionW , P is conglomerable in π if and only if P

is disintegrable in π.

PROOF. Let P be a coherent prevision over the collectionW . We show first

that P is both conglomerable and disintegrable in the finest partition Ω with re-

spect to W . Let π = Ω. To see that P is conglomerable in Ω, let X ∈ W .

Assumption 1 implies that P (X|ω) = X(ω) and, by coherence of the uncondi-

tional prevision P ,

inf
ω∈Ω

X(ω) ≤ P (X) ≤ sup
ω∈Ω

X(ω).

To see that P is disintegrable in Ω, note that H(ω) = {ω} for all ω, and

P (X|H) = X for all X ∈ W . Hence, we have P [P (X|H)] = P (X), and P is
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both conglomerable and disintegrable in Ω with respect toW .

Next, let π be a general partition. By the third claim in Lemma 3, P [P (X|H)|h] =

P (X|h) for all h ∈ π and all X ∈ W . By linearity of conditional prevision, it

follows that, for each h ∈ π and X ∈ W ,

P [X − P (X|H)|h] = 0.

Hence

inf
h∈π

P [X − P (X|H)|h] = 0 = sup
h∈π

P [X − P (X|H)|h].

We have assumed that X − P (X|H) ∈ W . If P is conglomerable in π, then

P [X −P (X|H)] = 0, from which it follows that P (X) = P [P (X|H)], so that P

is disintegrable in π.

If P is disintegrable in π then Lemma 6 shows that P is conglomerable in π.

�

It is easy to see that the collection Z of all random variables that satisfy As-

sumption 2 satisfies the conditions of Theorem 1, and hence is not of Class 1. The

key assumption in Theorem 1 is (16). For an arbitrary collectionW that satisfies
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Assumption 2, define

W− = {X − P (X|H) : X ∈ W},

W+ = W ∪W−.

The following results (the second of which is trivial) help to distinguish some

collections of random variables by their class.

LEMMA 7. Let P be a coherent prevision and π a partition. Let H be as

defined in Theorem 1. Let W be a collection of random variables that satisfy

Assumption 2. Then

1. W+ satisfies (16),

2. W is of Class 2 relative to P and π if and only ifW+ is also of Class 2, and

3. ifW is not of Class 2 relative to P and π, thenW+ is of Class 0.

PROOF. For part (i), let X ∈ W so that X − P (X|H) ∈ W+. Also P [X −

P (X|H)|H] is identically 0, hence

X − P (X|H)− P [X − P (X|H)] ∈ W+.

28



For part (ii), the “if” direction is immediate from Proposition 2. For the “only if”

direction, note that for every Y ∈ W−, P (Y |H) is identically 0 and P (Y ) = 0

ifW is of Class 2. For part (iii), Theorem 1 says thatW+ is either of Class 0 or

Class 2. IfW is not of Class 2, then no superset of it, such asW+, can be of Class

2. HenceW+ must be of Class 0. �

PROPOSITION 3. If P is a countably additive prevision on a classW of ran-

dom variables and every element of π has positive probability, thenW is of Class

2 relative to P and π.

One subtle point concerning Proposition 3 is that P can be a countably additive

prevision on the collection of all bounded random variables but fail to be countably

additive on a collection that includes unbounded random variables. The example

in Section 5 has this property.

5. A conglomerable example that is not disintegrable. The following con-

struction is a modification of an example given in Dubins (1975, Theorem 2). Let

Ω = {(i, k) : i = 1, 2, . . . , k = i, i + 1, . . .} be the set of ordered pairs of pos-

itive integers in which the first coordinate is greater than or equal to the second.

We use the algebra A = 2Ω. Define a countably additive probability P on Ω by

P ({(i, k)}) = 2−k for each (i, k) ∈ Ω. It follows that ∅ is the only subset of Ω
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with 0 probability. Since P is countably additive over A, it is also countably ad-

ditive on the set X of bounded random variables defined on Ω. By Proposition 3,

X is of Class 2 relative to P and every partition π that we choose to consider.

Next, we extend P to a collection Y of random variables that are bounded

below in such a way that P (|Y |) < ∞ for each Y ∈ Y . Part of the extension

relies on the expectation operator

E(Y ) =
∑

(i,k)∈Ω

P ({(i, k)})Y ((i, k)),

which is well-defined for all Y that are bounded below. Also, E(X) = P (X) for

allX ∈ X . As de Finetti (1974, Section 3.12) showed, if Y is unbounded above, it

is possible that P (Y ) > E(Y ). Indeed, unless there exists at least one unbounded

Y whose prevision differs from its expectation, P will be countably additive on

the collection of all random variables with finite prevision and hence will be both

conglomerable and disintegrable in every partition. We call the difference β(Y ) =

P (Y ) − E(Y ) the boost function. (See Seidenfeld, Schervish and Kadane, 2006

for a more detail about the boost function.) We have that β(X) = 0 for every

bounded X , and β is a linear functional that is nonnegative for every random

variable bounded below.
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We begin by extending P to a particular unbounded random variable W , and

then to a linear space L including W and all of X . We then let Y be the sub-

collection of L consisting of the random variables that are bounded below. The

starting random variable is W (i, k) = k. We set P (W ) = 14 = E(W ) + 10, so

that β(W ) = 10. In order to find a partition in which P is conglomerable but not

disintegrable, we need to extend P beyond the linear span of X and {W}. We do

this by defining β on a larger collection of random variables.

DEFINITION 7. Let Ω be a non-empty set. A collection p of subsets of Ω is

called an ultrafilter if the following conditions hold:

• For every subset A ⊆ Ω, either A ∈ p or AC ∈ p, but not both.

• If A,B ∈ p, then A ∩B ∈ p.

• If A ∈ p and A ⊆ B, then B ∈ p.

The simplest ultrafilters are the principal ultrafilters that consist of all subsets that

contain a specific element of Ω. All other ultrafilters are called non-principal. A

proof of the existence of non-principal ultrafilters can be found in Comfort and

Negrepontis (1974). The following fact about non-principal ultrafilters is useful.
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LEMMA 8. Let Ω be an infinite set, and let p be a non-principal ultrafilter.

Then every element of p has infinitely many elements. In particular, the comple-

ment of every finite set is in p.

PROOF. Let A ∈ p. Suppose, to the contrary, that A has finitely many el-

ements. Split A into two nonempty subsets A1 ∪ A2 = A. Then either A1 or

AC1 ∈ p. If AC1 ∈ p, then A2 = AC1 ∩ A ∈ p. So either A1 or A2 is in p. Repeat

this exercise with the set that is in p until one arrives at a set in p with exactly one

element. This would make p a principal ultrafilter. To see that the complement of

every finite set A is in p, suppose to the contrary that AC 6∈ p. Then A ∈ p, which

contradicts what we have already proved. �

Let p and q be non-principal ultrafilters on the positive integers, and construct

the ultrafilter product q · p on Ω as follows. For each S ⊆ Ω, define Si = {k :

(i, k) ∈ S}. We say that S ∈ q ·p if {i : Si ∈ p} ∈ q. The following result follows

easily from elementary properties of non-principal ultrafilters. (See Comfort and

Negrepontis, 1974, p. 157.)

LEMMA 9. A necessary (but not sufficient) condition for S ∈ q ·p is that there

exist infinitely many i such that (i, k) ∈ S for infinitely many k. A sufficient (but

not necessary) condition for S ∈ q · p is that for all but finitely many i (i, k) ∈ S

for all but finitely many k. In particular, if the supremum over k of the cardinality
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of {i : (i, k) ∈ S} is finite, then S 6∈ q · p.

PROOF. For the necessary condition, assume that S ∈ q · p, so that T = {i :

Si ∈ p} ∈ q. It follows from Lemma 8 that T has infinitely many elements. Also,

for each i ∈ T , Si has infinitely many elements according to Lemma 8 because

Si ∈ p. For the sufficient condition, assume that for all but finitely many i (i, k) ∈

S for all but finitely many k. Let T = {i : Si is the complement of a finite set}.

Lemma 8 says that Si ∈ p for each i ∈ T . Also, T ∈ p because T is the com-

plement of a finite set. This implies S ∈ q · p. For the final claim, assume to

the contrary that S ∈ q · p. Let n be the supremum over k of the cardinality of

Tk = {i : (i, k) ∈ S}. Because S1, . . . , Sn+1 ∈ p, T = ∩n+1
i=1 Si ∈ p. Let k ∈ T .

Then k ∈ Si for i = 1, . . . , n + 1. But then the cardinality of Tk is at least n + 1,

a contradiction. �

We use Lemma 9 to determine which of the following three sets is in the

ultrafilter q · p, as these sets are key to the main example of this section:

L = {(i, k) : k > 2i}, U = {(i, k) : k < 2i}, and Q = {(i, k) : k = 2i}. (17)

Then L ∈ q · p according to the sufficient condition in Lemma 9, while U 6∈ q · p

according to the necessary condition. Also, Q 6∈ q · p, according to the last result
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in Lemma 9.

We now make use of the ultrafilter q · p to extend β to the collection of all

random variables of the formWS where S is the indicator function of an arbitrary

subset S ⊆ Ω. Set β(WS) = 10 if S ∈ q · p and β(WS) = 0 otherwise. The

prevision P now extends easily to the linear span L of all of the random variables

for which β has been defined. The set L consists of all random variables of the

form

Y = X + αWS, (18)

where X is bounded, α is real, and S is an indicator of a subset of Ω. Define Y to

be the set of all Y ∈ L for which α ≥ 0 in (18). Because every nonempty event

has positive probability, if Y ∈ Y , then P (Y |h) is finite for every h ⊆ Ω. The

following result follows easily from the linearity of β.

PROPOSITION 4. If Z ∈ Y and {Z ≤ cW} ∈ q · p, then β(Z) ≤ 10c. Hence,

if for all c > 0 {Z > cW} 6∈ q · p, then β(Z) = 0.

Next, partition Ω by the values of W . That is, πW = {hk}∞k=2 where hk =

{W = k}. Each hk consists of exactly k−1 points, i.e., hk = {(k, 1), . . . , (k, k−

1)} for k = 2, 3, . . .. The conditional distribution given hk is uniform over those

k − 1 points.
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THEOREM 2. With respect to the collection Y , previsions are conglomerable

in πW but they are not disintegrable in πW .

PROOF. First we show that P is not disintegrable in πW . Let L, U , and Q

be as defined in (17). For each k, U ∩ hk and L ∩ hk have the same number of

elements and all elements of hk have the same probability. Hence,

P (U) = P (L) =
1

2
[1− P (Q)] > 0.

Because L ∈ q · p and U 6∈ q · p, P (LW ) = P (UW ) + 10. Because each h ∈ πW

is a finite set, P (Z|h) = E(Z|h) for each h ∈ πW . Hence, for k = 2, 3, . . .,

P (UW |hk) = P (LW |hk) =


k
2

if k is odd,

k(k−2)
2(k−1)

if k is even.

Hence,

P [P (UW |H)] = P [P (LW |H)],

but P (UW ) 6= P (LW ), and P is not disintegrable in πW .

Next, we show that with respect to variables in Y , P is conglomerable in πW .

35



Let Z ∈ Y . Recall that P (Z) = E(Z) + β(Z), and β(Z) ≥ 0. We know that

inf
h∈πW

P (Z|h) = inf
k
E(Z|hk) ≤ E(Z) ≤ P (Z).

What remains is to show that P (Z) ≤ suph∈πW
P (Z|h).

If suph∈πW
P (Z|h) =∞, the proof is complete. So, assume that

sup
h∈πW

P (Z|h) = r <∞.

Hence supk E(Z|hk) = r andE(Z) ≤ r. Since Z ∈ Y , there exists b > −∞ such

that b ≤ Z(i, k) for all i, k. Let Z ′ = Z − b so that Z ′ ≥ 0 and β(Z ′) = β(Z).

The conditional previsions {P (Z ′|hk)}∞k=2 are bounded above by r− b and below

by 0. Let d > 0. The Markov inequality says that

P (Z ′ > dW |hk) = P (Z ′ > dk|hk) ≤
r − b
dk

.

Recall that the conditional distribution P (·|hk) is uniform over the k− 1 points in

hk. Hence, for each d > 0 and all k, at most (r − b)/d out of the k − 1 points in

hk may satisfy Z ′(i, k) > dW (i, k). That is, the event {Z ′ > dW} ∩ hk contains

of at most (r − b)/d points for each k. By the last result in Lemma 9, we have
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{Z ′ > dW} 6∈ q · p. Proposition 4 now says that β(Z ′) = 0, hence β(Z) = 0. So

P (Z) = E(Z) ≤ r, as required by conglomerability. �

6. Discussion. Conglomerability and disintegrability are familiar concepts

in the countably additive theory of probability, although the names may not be

as familiar as the concepts. The law of total probability or “tower property” of

conditional expectations is essentially disintegrability, namely that the mean of a

conditional mean is the marginal mean. With disintegrability taken for granted,

conglomerability is simply an instance of the property of countably additive ex-

pectations that the mean of a random variable lies in the closed convex hull of

its range. Of course, the countably additive theory guarantees disintegrability by

allowing the conditional probabilities of events to change with the partition on

which one conditions. The well-known Borel paradox is a classic example of how

this happens. In the countably additive theory Kadane, Schervish and Seidenfeld

(1996) illustrates how pervasive the Borel paradox is. If one insists on P (X|h)

having a meaning for every random variable X and every nonempty event h, then

not even the countably additive theory can guarantee disintegrability in every par-

tition.

As a final note, it is important to keep in mind that the concepts of conglom-
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erability and disintegrability are defined with respect to a collection of random

variables. The larger the collection of random variables, the more conditions of

the form (11) and (12) that each concept requires. That is, in order for P to be con-

glomerable in π with respect to a collectionW , (11) must hold for every X ∈ W .

Similarly, for P to be disintegrable in π with respect to W , (12) must hold for

every X ∈ W . Consider the three collections X ⊂ Y ⊂ Z that figure in the

results of this paper. That is, X is the collection of all bounded random variables,

Z is the collection of all random variables that satisfy Assumption 2, and Y is an

intermediate collection such as the collection in Section 5. If P is conglomerable

in π with respect to Z , then Z is of Class 2 relative to P and π and so are Y and

X . Similarly, if P is disintegrable in Z with respect to π, then all three collections

are of Class 2. However, the equivalence of conglomerability and disintegrability

does not carry over from larger collections to smaller collections. The reason is

that Z might be of Class 0 while Y is of Class 1 and X is of Class 2. Indeed, this

is precisely what occurs in the example of Section 5.
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